Биноминальная модель

Банковское дело » Модели оценки опционов » Биноминальная модель

Страница 2

rB

=

Cd

(2);

Значения Cu и Cd в момент 1, когда закончится срок опциона известны, так как известны характеристики опциона и стоимость обыкновенных акций. Таким образом, имеем два уравнения с двумя неизвестными. Вычитая уравнение AdS+rB=Cd из AuS+rB=Cu, получим решение относительно u:

As (u-d)=Cu-Cd

Преобразуя, получим:

A

=(

Cu

-

Cd

)\

S

(

u

-

d

)

(3);

Величина А называется коэффициентом хеджирования, она определяет, сколько обыкновенных акций нужно купить, чтобы получить такой же денежный доход, как и от покупки одного опциона.

Решаем уравнения 1 и 2 относительно В:

B= (uCd – dCu)\(u-d)*r

(4)

Портфель, состоящий из одного опциона покупателя, в любом случае принесёт такой же доход, что и портфель из В облигаций и А обыкновенных акций. Поэтому в состоянии равновесия первоначальная стоимость обоих портфелей должна быть одинаковой. Для этого должно выполняться равенство:

C

=

AS

+

B

(5).

Стоимость опциона покупателя С должна быть равна AS+B, иначе есть возможность получить на операциях с опционом спекулятивную прибыль.

Для того, чтобы рассчитать стоимость опциона покупателя не было необходимости знать вероятности исходов u и d. Вероятности могут повлиять на стоимость опциона покупателя, но только косвенно. Если вероятность u велика, цена акции S, несомненно, выросла бы, и из уравнения (5) можно увидеть, что рост S увеличивает стоимость опциона С. Модель не показывает, как оценивать акции. Она показывает, как оценивать опционы покупателя, зная цену акции. Другими словами, цена опциона покупателя зависит от цены акции.

Кроме того, модель не требует, чтобы инвесторы договаривались о вероятности исхода u. Оптимистично настроенные по отношению к u инвесторы, возможно захотят обладать большим количеством акций (или опционов покупателя). Но при заданной цене акции, они придут к соглашению относительно цены опциона. Покажем, как только что описанная модель используется для формирования хеджированного портфеля и определения стоимости опциона покупателя при заданных условиях.

Пример.

S = 100 $; u = 1,5; d = 1,0; K = 120 $; rf = 0,10; r =1,10;

Cu = max (uS – K, 0) = max (150 $. – 120 $, 0) = 30 $;

Cd = max (dS – K, 0) = max (100 $ – 120 $, 0) = max (-20 $) = 0.

Срок опциона закончится через один период. Сейчас цена акций равна 100 $, а через один период цена будет или 150 $, или 100 $

uS = 1,5* 100 долл. = 150 $;

dS = 1,0*100 долл. = 100 $;

Если цена исполнения опциона 120 $, то стоимость опциона в конце периода будет либо 30 $(при цене акций 150 $), либо 0 (при цене акций 100 $). Чтобы найти А и В, воспользуемся уравнениями (3) и (4):

Так как (u-d) = 0.5 и Cu – Cd = 30 $, то

A = (Cu – Cd)\(u – d)*S = 30 $ /0.5*100 $;

B= (uCd – dCu)\(u-d)*r = (-1)*30 $/0.5 (1.1) = (-60)$/1.1 = (-54.55)$;

Отрицательное значение B показывает, что следует использовать заёмный капитал. На каждый опцион следует купить 0.6 обыкновенных акций на сумму 0.6*100 $ = 60 $ и взять заём 60 $/(1.1) = 54.55 $(в период 1 в счёт погашения долга будет уплачено 60 $).

Если произойдёт событие u, то стоимость портфеля будет:

Обыкновенные акции

Облигации: rB

Итого

100 долл.*0.6 = 60 $

-60 $

0 $

Страницы: 1 2 3

Сатьи по теме:

Функция кредитно-денежного регулирования и операции ЦБ РФ
Кредитно-денежная политика ЦБ представляет собой совокупность мероприятий, направленных на изменение денежной массы в обращении, объема кредитов, уровня процентных ставок и других показателей денежного обращения и рынка ссудных капиталов. Ее цель – регулирование экономики посредством воздействия на ...

Показатели деятельности страховых компаний
Для оценки деятельности страховых компаний используются абсолютные, относительные и средние показатели. К абсолютным статистическим показателям, наиболее часто использующимся в статистическом анализе финансово-экономической деятельности страховых организаций, относятся: • абсолютный размер собствен ...

Расчет базовой страховой премии по осаго в Молдове
Методология расчета базовой страховой премии и корректирующих коэффициентов по обязательному страхованию гражданской ответственности за ущерб, причиненный автотранспортными средствами , разработана в соответствии с положениями статьи 11 Закона об обязательном страховании гражданской ответственности ...

Навигация

Copyright © 2021 - All Rights Reserved - www.banksprofile.ru